Regulation of Tyrosine Phosphatase STEP61 by Protein Kinase A during Motor Skill Learning in Mice

نویسندگان

  • Laure Chagniel
  • Yan Bergeron
  • Geneviève Bureau
  • Guy Massicotte
  • Michel Cyr
چکیده

Recently, striatal-enriched protein tyrosine phosphatase (STEP) and its upstream regulator protein kinase A (PKA) have been suspected to play a role in the intracellular mechanisms of fear conditioning and spatial memory. However, whether they contribute to the learning and memory of motor skills is totally unknown. In this study, we have investigated the role of STEP and PKA activities during motor skill learning associated with the accelerating rotarod task. We observed that learning the rotarod task differentially modulated the levels of phosphorylated STEP61 at serine 221, a site directly regulated by PKA, in the hippocampus, motor cortex and striatum. In a second set of experiments, we have pharmacologically inhibited PKA by the injection of Rp-cAMPS directly into the dorsal striatum of mice before rotarod trainings. PKA phosphorylation of STEP prevents the dephosphorylation of STEP substrates, whereas inhibition of PKA promotes STEP activity. Striatal PKA inhibitions dose-dependently impaired mice performances on the accelerating rotarod task. General motor abilities testing revealed an intact motor control in mice treated with 5 and 20 µg of Rp-cAMPS, but not at the highest dose of 40 µg. This suggested that motor learning was selectively affected by PKA inhibition at lower doses. Most notably, striatal inhibition of PKA reduced the levels of phosphorylated STEP61 at serine 221. Our data support that inactivation of STEP61 by the PKA activity is part of the molecular process associated with motor skill learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STEP61 is a substrate of the E3 ligase parkin and is upregulated in Parkinson's disease.

Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). The loss of SNc dopaminergic neurons affects the plasticity of striatal neurons and leads to significant motor and cognitive disabilities during the progression of the disease. PARK2 encodes for the E3 ubiquitin ligase parkin and is implicated in genetic and sporadi...

متن کامل

Seizure-Induced Regulations of Amyloid-β, STEP61, and STEP61 Substrates Involved in Hippocampal Synaptic Plasticity

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline. Pathologic accumulation of soluble amyloid-β (Aβ) oligomers impairs synaptic plasticity and causes epileptic seizures, both of which contribute to cognitive dysfunction in AD. However, whether seizures could regulate Aβ-induced synaptic weakening remains unclear. Here we show that a single e...

متن کامل

Functional adaptation of the N-methyl-D-aspartate receptor to inhibition by ethanol is modulated by striatal-enriched protein tyrosine phosphatase and p38 mitogen-activated protein kinase.

The hippocampal N-methyl-D-aspartate receptor (NMDAR) activity plays important roles in cognition and is a major substrate for ethanol-induced memory dysfunction. This receptor is a glutamate-gated ion channel, which is composed of NR1 and NR2 subunits in various brain areas. Although homomeric NR1 subunits form an active ion channel that conducts Na⁺ and Ca²⁺ currents, the incorporation of NR2...

متن کامل

STEP61 regulates Pyk2 signaling STriatal-Enriched Protein Tyrosine Phosphatase (STEP) Regulates Pyk2 Activity*

Background: Proline-rich tyrosine kinase 2 (Pyk2) is implicated in synaptic plasticity; however, it remains unclear how Pyk2 is inactivated within neurons. Results: STriatal-Enriched Protein Tyrosine Phosphatase (STEP) directly binds to and dephosphorylates Pyk2 at Tyr. Conclusion: STEP inactivates Pyk2 and its downstream signaling pathways. Significance: These results identify an important reg...

متن کامل

Altered regulation of SHP-2 and PTP 1B tyrosine phosphatases in cystic kidneys from bcl-2 -/- mice.

Protein tyrosine phosphorylation is a dynamic reversible process in which the level of phosphorylation, at any time, is the result of phosphatase and/or kinase activity. This balance is critical for control of growth and differentiation. The role of tyrosine phosphatases during nephrogenesis and in kidney disease requires delineation. Appropriate regulation of focal adhesion proteins such as fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014